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Abstract— : Three different second order sliding mode
controllers are considered in this paper. An adaptive gain is
implemented which adjusts the level of scalar control action
on-line based on direct measurements of the equivalent control
obtained by a low-pass filter. It is shown that the adaptive al-
gorithm converge in finite time, thus the chattering is reduced
in amplitude and the amount of energy demanded by the
controller is reduced too. The results of a real implementation
of the adaptive sliding mode controllers in a spring-mass-
damper system are presented.
Keywords: Sliding Mode, Variable Structure.

I. INTRODUCTION

The concept of adaptation in the context of control
engineering refers to the variation of certain parameters
with respect to a certain signal based on utilization of
current information. It involves modifying the control law
used by the controller in order to cope with the fact the
parameters of the system being controlled are uncertain,
or, to improve the performance of the controller and its
effectiveness exhibiting the same dynamics properties under
uncertainty conditions. Even more, adaptive control implies
improving dynamic characteristics while properties of a
controlled plant or environment are varying (Astrom, Wit-
tenmark, 1989) (Shankar, Bodson, 1994).

I-A. Motivation

The main obstacle of Sliding mode Control (SMC)
application is the chattering which is an oscillatory
phenomenon inherent in sliding motions (see, for
example, (Bartolini, Ferrara, Usai, Utkin, 2000; Boiko,
Fridman, 2005; Boiko, Fridman, Pisano, Usai, 2007)). The
chattering phenomenon is caused due to the high frequency
switching nature of the controller. The phenomenon is
well-known from literature on power converters and
referred as ”ripple”(Perreault, Selders, 1999).

The amplitude of the chattering is proportional to the
gain of the controller. In classical SMC the gain of the
control should be a constant value greater than the bound of
the uncertainty/perturbation. Thus the controller demands
a constant amount of energy that may not be needed to
maintain the system in sliding mode. Also the chattering
presents a constant amplitude that can be harmful for the
actuator and the plant.

I-B. Objective

The objective of this paper is to implement an adaptive
gain in second order SMC in order to reduce both

the chattering amplitude and the amount of energy
demanded by the controller. By adapting the gain of the
controller with respect to the uncertainty/perturbation, the
controller demands only the amount of energy needed
to compensate the uncertainty/perturbation. Hence the
chattering amplitude is proportional to the amplitude of
the uncertainty/perturbation and a considerable amount of
energy is saved.

II. MAIN RESULT

II-A. System description

Consider the following system

ẋi = xi−1 i = 1, 2..., n− 1

ẋn = a(t) + b(t)u(t, xi, xn)

(1)

with the control

u(t, xi, xn) = −k(t)w(xi, xn)

0 < kmin < K(t) < kmax (2)

where a(t) and b(t) are unknown bounded functions and
n is the order of the system. The terms kmin, kmax are
the bounds of the minimum and maximum value of k(t)
respectively. The term kmin is introduce with the purpose
of keeping the actuator always on in order to be ready to
compensate any perturbation. The term kmax is introduce
due to the limitations of the actuator which can not deliver
an infinite amount of power.

The equivalent control ueq(t, u(t, xi, xn)) is a continuous
signal that is equivalent to the control signal u(t, xi, xn)
when the system is in sliding mode

|ueq| =
∣∣∣∣a(t)b(t)

∣∣∣∣ = |c(t)| (3)

The parameters of the functions ueq(t, u(t, xi, xn)) and
u(t, xi, xn) are omitted for simplicity.

It is assume that

A1 The uncertain functions a(t) and b(t) are suffi-
ciently smooth and satisfy the following conditions:∣∣∣∣a(t)b(t)

∣∣∣∣ = |c(t)| < A < kmax (4)
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d|c(t)|
dt

< L (5)

A2 With k(t) > A the control u enforces sliding
mode on some surface σ(t, xi, xn) = 0(σ ∈ C1) (The
parameters of the function σ(t, xi, xn) are omitted for
simplicity) with the desired properties.
A3 The function ueq is available and can be derived
by filtering out a high frequency component of the
discontinuous function u by a low pass filter

τ ˙ueq + ueq(t, u) = u, ueq(0) = 0 (6)

with a small time constant τ > 0 and the output ueq
is, in fact, an estimate of ueq(t, u(t, xi, xn)) satisfying

|y(t)− ueq(t)| ≤ H(τ) →
τ→0

0, (7)

II-B. Description of the adaptive algorithm

In (Utkin, Poznyak, Ordaz, 2011) an adaptive
methodology is presented for the super-twisting algorithm.
A similar methodology is presented here for second order
and arbitrary order sliding mode controllers.

Consider the system (1). The adaptation law for the gain
of control (2) is described as

k̇(t) =

{
γkmax +M(k(t)), ifσ �= 0

γk(t)sign(δ) +M(k(t)), ifσ = 0

M(k(t)) =

⎧⎪⎨
⎪⎩
−γρk(t), ifk(t) > kmax

γρk(t), ifk(t) < kmin

0, if kmin ≤ k(t) ≤ kmax

δ(t) =

∣∣∣∣ ueq

k(t)

∣∣∣∣− α (8)

ρ > 1, γ > L
kmax

and α ∈ (0, 1) is the desired proportion
between the unknown function c(t) and gain k(t). The
function M(k(t)) is needed to ensure that the gain k(t)
remains bounded.

The idea of the algorithm is to increase the gain
k(t) until the system reach sliding mode. Once the
system reach sliding mode the dynamics of the gain
depends on the proportion α between the unknown
function c(t) and the gain k(t). The gain decreases if
|ueq/k(t)| < α and increases if |ueq/k(t)| > α until
|ueq/k(t)| = α → δ(t) = 0.

In someway the equivalent control is an equivalent
signal of the perturbation signal, thus when δ(t) = 0 the
proportion between the unknown function c(t) and the
gain k(t) is α.

II-C. δ(t) stability proof

To show that the variable δ(t) converge to zero it is
considered the following Lyapunov function

V (δ(t)) =
δ(t)2

2
(9)

its time derivative is calculated

V̇ (δ) = δ(t)δ̇(t) = δ(t)

(
d|c(t)|
dt

1

k
− k̇

k2
|c(t)|

)

= − 1

k

(
γ|δ(t)||c(t)| − d|c(t)|

dt
δ(t)

)

≤ −|δ(t)|
k

(
γ|c(t)| − d|c(t)|

dt

)

<
−|δ(t)|

k
(γ|c(t)| − L)

< −|δ(t)|
k

(γkmax − L) (10)

if
γ >

L

kmax
(11)

δ(t) converges to zero en finite time, thus the gain reach
the value

k(t) =
|c(t)|
α

(12)

that is a preselected minimum value that maintains the
trajectories of the system in sliding mode.

III. SECOND ORDER SLIDING MODE CONTROLLERS

WITH ADAPTIVE GAIN

In this section the results of the implementation of three
sliding mode controllers with adaptive gain in a spring-
mass-damper system are presented. It is shown in figure (III)
the spring-mass-damper system where the controllers were
implemented. The system consist on one spring one mass
and one damper. The video of each controller implemented
is available at the following address www.negrete.webs.com.

Figura 1. Spring-mass-damper system

Consider the following second order system as a model
of the spring-mass-damper system
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ẋ = y

ẏ = a(t) + b(t)u2(t, x, y)

u2 = −k(t)w(x, y), 0 < kmin ≤ k ≤ kmax (13)

where kmin and kmax are preselected minimum and
maximum values of gain k, respectively. The functions
a(t) and b(t) are unknown smooth bounded functions that
include the parameters of the spring-mass-damper system
which are assumed unknown. The state x represents the
position of the mass measured in centimeters and the state
y represents the derivative of the position of the mass
measured in centimeter per hour. Suppose that assumptions
A1, A2 and A3 holds.

III-A. Adaptive twisting control (ATWC)

Consider the system (13), where

w(x, y) = sign(x) + βsign(y), β ∈ (0, 1) (14)

is a version of the so-called twisting algorithm.

The parameters used in the implementation are γ =
4π,kmin = 1,kmax = 15, τ =

√
,001, β = 0,5, α = 0,45.
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Figura 2. Position of the mass (state x)-ATWC
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Figura 3. Velocity of the mass (state y)-ATWC
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Figura 4. Gain k(t) and perturbation-ATWC

III-B. Adaptive terminal control (ATEC)

Consider the system (13) where

w(x, y) = sign
(
y + λ|x|1/2sign(x)

)
, λ > 0 (15)

is a version of the so called terminal algorithm. The
values of the implementation are α = 0,95, kmin = 1,
kmax = 15, λ = 1, τ =

√
,001
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Figura 5. Position of the mass (state x)-ATEC
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Figura 6. Velocity of the mass (state y)-ATEC

III-C. Adaptive sub-optimal control ASC

Consider the system (13) where

w(x, y) = η(t)sign(x− βxm(t)) (16)
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Figura 7. Gain k(t) and perturbation-ATEC

were

η(t) =

{
1, ifxm(x− ηxm ≥ 0

η∗, ifxm(t)(x − ηxm) < 0
(17)

where xm(t) is a piece-wise function representing the
value of the last singular point of x, i.e. the most recent
value of x where y = 0.

The algorithm was implemented with the following va-
lues of parameters η∗ = 3, kmin = 0,5, kmax = 8, α = ,9
and γ = 5

2
π.
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Figura 8. Position of the mass (state x)-ASC
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Figura 9. Velocity of the mass (state y)-ASC
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Figura 10. Gain k(t) and perturbation-ASC

III-D. Discussion of results

It is observed in figures (III-A, III-A, III-B, III-B, III-C,
III-C) that the system converge to sliding mode in finite
time. It is clear from the same figures that the chattering
amplitude is at most of the order of micrometers and is
proportional to the amplitude of the perturbation, thus the
objective to reduce the amplitude chattering to a minimum
level is achieve.

The dynamics of the gain of the three controllers is
observed in figures (III-A, III-B, III-C). It is clear that the
amplitude of the gain varies with respect to the amplitude
of the perturbation. As a consequence of the adaptation of
the gain, the energy demanded by the controllers is only
the amount needed to compensate the perturbation saving
energy unlike the classical sliding mode controllers where
the gain is constant and the controllers demands a fixed
amount of energy the may not be needed for the control
objective.

A delay on the gain signal with respect to the
perturbation is observed in figures (III-A, III-B, III-C) due
to the implementation of the filter that is needed to obtain
the equivalent control (ueq). The delay leads to a loss of the
sliding mode that is observed in figures (III-A, III-A, III-B,
III-B, III-C, III-C). For example in figure (III-A) between
second 4 and 5 the amplitude of the perturbation is greater
than the amplitude of the gain leading to a destruction of
the sliding mode that is observed in figures (III-A, III-A).
This is the main disadvantage of this adaptation method.

IV. CONCLUSIONS

The implementation of an adaptive gain increases the
efficiency of sliding mode controller. With the adaptive
gain, the controller demands only the amount of energy
necessary to compensate the perturbation. Also the
chattering amplitude is reduce to a minimum value and its
proportional to the amplitude of the perturbation.
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The use of a low-pass filter to obtain the equivalent
control produce a delay on the dynamics of the gain.
The delay produce a momentary loss of the sliding mode
controller. This is the main disadvantage of this method. In
order to decrease the effect of the delay, a data acquisition
system with a smaller sampling time is required to reduce
constant of the low-pass filter, improving the accuracy of
the adaptive algorithm for the gain. The smaller the filter
constant , the greater the accuracy of the adaptive algorithm.
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